Interferometry at JPL

Michael Shao

Interferometry Projects

- Testbeds
 - Palomar Testbed Interferometer
 - SIM system testbed(s)
 - DS-3 Separated Spacecraft Interferometer flight demo
- Observatories
 - Keck Interferometer
 - SIM
 - Terrestrial Planet Finder

Palomar Testbed Interferometer

- Located at Palomar
 Observatory, 110 m
 baseline IR (2.2um)
 interferometer
- Testbed for Keck project, first fringe july 95
- To demonstrate narrow angle astrometry to ~60 uas (300 prad) and phase reference interferometry

Configuration showing 2 meter outrigger telescopes

nertining in

Keck Interferometer Overview

- · Science objectives
 - Exo-zodiacal emission at 10 μm around nearby stars.
 - Direct detection of warm, giant planets and brown dwarfs.
 - Astrometric detection of Uranus-sized planets to 20 pc.
 - Imaging of protoplanetary discs
- Measurements
 - Synthesis imaging with 3 mas resolution @ 2 μm.
 - Astrometric accuracy of 10 μas.
 - 22 mag @ 2 μm in 500 sec.
 - Starlight nulling for exo-zodi (down to 10 solar zodi)
- Approach
 - Combine the two Keck telescopes as an interferometer
 - Add four, two-meter outrigger telescopes for imaging and astrometry.

Space Interferometry Misssion

- 4 uas global astrometry
- 10 m deployed baseline
- 1 uas local astrometry
- Synthetic aperture imaging and nulling
- Cosmic distance scale (age)
- Planet search
- Galactic rotation (dark matter)
- Structure of AGNs

Technical Challenges

- Large deployed structure in space with (10's) nanometer stability of optical paths
- In order to perform 4uas astrometry, we must measure the position of the optics with very high accuracy, ~ 200picometer (pm).

Vibration Suppression

- Testbed ~7m flexible truss structure, with simulated on board noise sources
- Combination of active vibration isolation and active optical control reduces ambient noise from a few um to ~8 nm.
- Future, reduce projected on orbit optical path jitter to ~1nm

Picometrology

- 1Dimensional laser metrology at picometer levels
- Design and construction of microarcsec metrology testbed underway
 - 3D optical truss with total system error <200pm (goal)

New Millennium DS-3

DS-3 Configuration

Baseline

- 3 spacecraft, 2 identical collectors, one combiner
- Inter S/C metrology for:
 - relative attitude 50 mas
 - relative distance 10 nm
- Constellation rotation with optical gyro

DS-3 Experiment Summary

Configuration after S/C Separation

S/C bolted together as a connected link interferometer

- Automated fringe acquisition and tracking
 - FAST substitute
- Automatic alignment after launch
- More complex sequences (retargeting (2), rotational synthesis)

Terrestrial Planet Finder

Search for Habitable Planets around other stars in the solar neighborhood

TPF

Scientific Objectives

- Detect and characterize terrestrial planets around nearby stars
 - Make family portraits for ~1,000 stars out to ~50 light years
 - · Brightness, temperature, orbital distance of planets
 - · Infer size and mass
 - Characterize atmospheres of ~100 brightest planets
 - Look in 7-17 μm region for CO₂, H₂O, O₃, CH₄
 - Infer habitability from composition and physical conditions
- Carry out other astrophysical investigations
 - High sensitivity, high spatial resolution in IR

Phones Phones Phones Phones